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Abstract 36 

 37 

Several independent measurements of warm-season soil moisture and surface atmospheric 38 

variables recorded at the ARM Southern Great Plains (SGP) research facility are used to estimate 39 

the terrestrial component of land-atmosphere coupling (LAC) strength, and its regional 40 

uncertainty. The observations reveal substantial variation in coupling strength, as estimated from 41 

three soil moisture measurements at a single site, as well as across six other sites having varied 42 

soil and land cover types. The observational estimates then serve as references for evaluating 43 

SGP terrestrial coupling strength in the Community Atmospheric Model coupled to the 44 

Community Land Model. These coupled model components are operated in both a free-running  45 

mode and in a controlled configuration, where the atmospheric and land states are reinitialized 46 

daily, so that they do not drift very far from observations. Although the controlled simulation 47 

deviates less from the observed surface climate than its free-running counterpart, the terrestrial 48 

LAC in both configurations is much stronger, and displays less spatial variability, than the SGP 49 

observational estimates. Preliminary investigation of vegetation leaf area index (LAI) substituted 50 

for soil moisture suggests that the overly strong coupling between model soil moisture and 51 

surface atmospheric variables is associated with too much evaporation from bare ground, and too 52 

little from the vegetation cover. These results imply that model surface characteristics such as 53 

LAI, as well as the physical parameterizations involved in the coupling of the land and 54 

atmospheric components, are likely to be important sources of the problematical LAC behaviors.  55 

 56 

 57 

 58 

 59 
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1. Introduction 67 

Land-atmosphere coupling (LAC) has important implications for weather and climate 68 

predictability, as well as the simulation of climatic change [Seneviratne et al., 2010; Orth and 69 

Seneviratne 2016]. The past fifteen years have witnessed numerous studies focusing on the 70 

coupling between soil moisture and diverse variables of the atmospheric boundary layer, as 71 

displayed by models, reanalyses, and observations. 72 

Early LAC numerical experimentation utilized single models [Dirmeyer, 2001], but quickly 73 

advanced to execution of systematic intercomparison experiments involving multiple global 74 

climate models (GCMs) [Koster et al. 2002, 2004, 2006, 2010, 2011]. These GCM studies 75 

promoted the concept of “hot spots”, located in semi-arid zones such as the U.S. Great Plains. 76 

Here the interactions of summertime soil moisture with surface temperature and humidity, and 77 

potentially also with precipitation mediated by local convection, are especially strong [Guo et al. 78 

2006; Taylor et al., 2012; Gentine et al., 2013; Tawfik et al., 2015a, b]. In such moisture-limited 79 

regions--and especially in summer when radiative warming of the land is high--surface 80 

evaporation, humidity, and temperature are strongly influenced by soil moisture, and thus LAC 81 

tends to be most intense.  82 

The GCM inter-comparisons inspired a subsequent wave of numerical experimentation 83 

focusing on details of LAC on different continents, which sometimes also employed mesoscale 84 

atmospheric models or regional climate models (RCMs) [e.g. Lawrence and Slingo, 2005; 85 

Seneviratne et al., 2006; Fischer et al., 2007; Meng and Quiring, 2010; Wei et al., 2010; 86 

Santanello et al., 2007, 2009, 2011b, 2013; Comer and Best, 2012, Dirmeyer et al. ,2012; Lorenz 87 

et al., 2012, 2015; Mei and Wang, 2012; Guo and Dirmeyer, 2013; Diro et al., 2014; Hirsch et 88 

al., 2014, 2016; Sun and Pritchard, 2016]. In addition, large-scale LAC was diagnosed in 89 
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multiple climate models participating in the Coupled Model Intercomparison Project (CMIP) 90 

[Notaro, 2008; Williams et al., 2012; Dirmeyer et al., 2013], which also included specialized 91 

experiments with prescribed versus prognostic soil moisture [Seneviratne et al., 2013; Berg et al., 92 

2015]. More recently, modeling studies by Koster et al. [2016] and Zhou et al. [2016] 93 

highlighted remote interactions of soil moisture anomalies with the large-scale atmospheric 94 

circulation over North America. 95 

As with free-running modeling experiments, reanalyses offer an opportunity to study LAC at 96 

continental to global scales, but with simulations that are steadily updated by assimilating 97 

available observations. Examples of this approach include work by Ruiz-Barradas and Nigam 98 

[2006], Luo et al. [2006], Wei and Dirmeyer [2010, 2012], Findell et al. [2011], Song et al. 99 

[2016], and Santanello et al. [2015]. In some instances also, LAC in several different reanalyses 100 

was compared with that in global or regional models [e.g. Zeng et al., 2010; Liu et al., 2014]. 101 

Unrealistic representations of LAC that are attributable to the models underlying the 102 

reanalyses [e.g. Santanello et al., 2015] have motivated alternative investigations using available 103 

observations. These include satellite-based investigation of large-scale LAC [Ferguson and 104 

Wood, 2011; Ferguson et al., 2012; Tuttle and Salvucci, 2016; Levine et al., 2016], local or 105 

regional-scale LAC estimated from in situ field observations [Kustas et al., 2005; Santanello et 106 

al., 2005; Dirmeyer et al., 2006; Lamb et al. ,2012; Ruiz Barradas and Nigam, 2013; Phillips and 107 

Klein, 2014; Guillod et al., 2014, 2015; Ford et al., 2015a, 2015b, 2017], or a mixture of both 108 

approaches [Miralles et al., 2012; Roundy and Santanello, 2017]. Many in-situ observational 109 

analyses have employed extensive data records suitable for LAC studies that are maintained by 110 

the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) and AmeriFlux 111 

Programs [Mather . and Voyles, 2013; Hargrove et al. 2003]. In particular, the ARM Southern 112 
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Great Plains (SGP) facilities in Northern Oklahoma and Southern Kansas [Sisterson et al.,2016; 113 

Berg and Lamb, 2016] have provided the continuous data records required for investigations of 114 

LAC in a hot-spot region. 115 

A few common themes run through results of the historical collection of modeling, 116 

reanalysis, and observational studies. One is that the coupling of soil moisture with surface 117 

atmospheric variables such as evaporation or temperature is generally more robust than its 118 

coupling with local precipitation via convective processes. Indeed, the extent to which soil 119 

moisture significantly impacts precipitation in different locations still remains  unresolved, 120 

despite receiving much scientific attention [e.g. Findell et al., 2011; Taylor et al., 2012; Lamb et 121 

al., 2012; Ruiz-Barradas and Nigam, 2013; Phillips and Klein, 2014; Guillod et al., 2014, 2015; 122 

Ford et al. 2015a, 2015b, 2015c; Tuttle and Salvucci, 2016]. A conceptual framework for 123 

addressing the coupling of soil moisture with precipitation is to view this as a two-legged 124 

process: a terrestrial component involving soil moisture coupling with surface evaporation, and 125 

an atmospheric linkage between surface evaporation and convective precipitation [Guo et al., 126 

2010; Dirmeyer, 2011; Santanello et al., 2011a; Tawfik et al., 2015a, 2015b]. Where model 127 

results have been compared with reanalyses or observations [e.g. Dirmeyer et al., 2006; Ruiz-128 

Barradas and Nigam, 2006; Zeng et al., 2010; Ferguson et al., 2012; Phillips and Klein, 2014; 129 

Levine et al. , 2016], a second common theme is that simulatedcoupling of soil moisture with 130 

atmospheric variables  is generally too strong, although this may depend on model-specific 131 

parameterizations [Lawrence and Slingo, 2005; Comer and Best, 2012; Mei and Wang, 2012; 132 

Sun and Pritchard, 2016].  133 

Further investigation of the putative overly strong model representation of coupling strength 134 

motivates the present study, which focuses solely on the terrestrial link in the soil moisture-135 



5 

 

atmospheric coupling chain. This focus ensures that a truly local estimate of the LAC strength is 136 

obtained: if the atmospheric linkage were also to be investigated, effects on the 10-50 km 137 

mesoscale would need to be taken into account.  138 

Our study employs ARM in situ measurements in the SGP region to evaluate terrestrial LAC 139 

in version 5.1 of the Community Atmospheric Model coupled to version 4 of the Community 140 

Land Model [Neale et al., 2012; Oleson et al., 2010]. While the scarcity of in situ soil moisture 141 

(SM) measurements often hinders reliable estimation of observed LAC, there exist three 142 

independent data sets of shallow-depth SM, as well as alternative measurements of surface 143 

atmospheric variables (e.g. latent/sensible heat fluxes, relative humidity, temperature) at the 144 

Central Facility (CF) of the ARM Southern Great Plains site near Lamont, Oklahoma (at 145 

coordinates 36.61 degrees North latitude and 97.48 degrees West longitude). In addition, there 146 

are other SM and atmospheric measurements at ARM sites surrounding the CF that are sufficient 147 

to  allow estimation of terrestrial LAC in the SGP region. Of course, diverse measurements of 148 

local soil moisture and surface atmospheric variables in the context of varying soil types and 149 

vegetation covers are expected to give rise to different estimates of terrestrial LAC strength. 150 

These strength differences provide a rough measure of the inherent uncertainties existing in 151 

various aspects of the  regional-scale LAC, and thus supply a reference standard for evaluating 152 

similar LAC aspects simulated by the climate model.  153 

Most previous modeling studies of LAC have employed simulations where both the 154 

atmospheric and land components are initialized from model-specific climatologies, and where 155 

soil moisture and temperature are spun-up until a quasi-equilibrium coupled climate state is 156 

achieved. Subsequent numerical integration then usually proceeds with observed historical 157 
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variations in ocean sea surface temperatures (SSTs) and sea-ice extents prescribed, as in standard 158 

Atmospheric Model Intercomparison Project (AMIP) experiments [Gates et al., 1999].  159 

Our study also evaluates terrestrial LAC in such a free-running AMIP simulation of the 160 

CAM5.1/CLM4 model. In addition, we make use of a continuous chain of CAM5.1 hindcasts in 161 

which the atmospheric and land states are kept close to observations [Ma et al., 2015]. Running 162 

the CAM5.1/CLM4 coupled system in such a controlled hindcast (HC) configuration has the 163 

distinct advantage of mitigating biases introduced by the modeled atmospheric dynamics, in 164 

order to highlight errors that are more closely tied to the model’s parameterized physical 165 

processes [Phillips et al., 2004]. Hence, a central focus of our study is to identify differences in 166 

the strength and characteristics of land-atmosphere coupling that are displayed by the 167 

CAM5.1/CLM4 when it is run in the free-running AMIP versus the controlled HC configuration. 168 

The remainder of this paper is organized as follows. Section 2 describes the pertinent 169 

measurements of soil moisture and surface atmospheric variables available at the SGP-CF site, 170 

and . Section 3 includes discussion of the analysis approach and the metrics used for estimating 171 

coupling strength, as well as the range of LAC results at both the CF site and over the broader 172 

SGP region.  In Section 4, the implementations of the free-running AMIP versus controlled HC 173 

configurations of the coupled CAM5/CLM4 model are discussed. Their respective simulations of 174 

terrestrial LAC are evaluated relative to the range of SGP observational estimates in Section 5, 175 

and a general validation of surface variables in both the AMIP and HC simulations is conducted 176 

at the SGP-CF site, where the requisite observations exist. assessed. Section 6 considers the use 177 

of vegetation leaf area index (LAI) as an alternative coupling agent to that of soil moisture, and 178 

discusses substantive differences between observed and modeled couplings with LAI at the SGP-179 

CF site. The simulated couplings with LAI also are used to interpret the contributions to local 180 
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surface evaporation of bare ground versus vegetated surfaces in the model. Finally, Section  7 181 

offers concluding remarks.  182 

2. Observational Data  183 

 Our study investigates LAC during the warm season (May-June-July-August or MJJA) 184 

when the land-atmosphere coupling at SGP is most intense. In the vicinity of the SGP-CF 185 

ungrazed pasture (grass-covered) site, three independent measurements of shallow-depth soil 186 

moisture (SM) are available for the years 2003-2011. These SM data sets are designated by the 187 

acronyms SWATS, EBBR, and CO2FLX, which may be accessed from the ARM Best Estimate-188 

Land (ARMBELAND) section of the ARM data archive (http://www.archive.arm.gov/discovery 189 

) at hourly sampling intervals [Xie et al., 2014]. 190 

The Soil Water and Temperature System (SWATS) provides vertical profiles of soil 191 

temperature and moisture [Schneider et al., 2003; Bond, 2005]. The SWATS instrument  192 

imposes repeating electrical heating pulses, and measures the subsequent temperature rise and  193 

decay from heat dissipation. The lower the temperature rise and the more rapid its decay, the 194 

higher is the soil moisture content, with the exact relationship depending on the local soil texture 195 

and other properties. To provide measurement redundancy, SWATS observations are taken at 196 

multiple depths in ‘east’ and ‘west’ profiles spaced about a meter apart (designated as SWATS-E 197 

and SWATS-W).  Where both profiles of data are available, these twin hourly SM values at the 198 

CF site were averaged, and treated as a single time series in our study. However, when data from 199 

one of these profiles suffer from extensive erroneous or missing values (e.g. for the west profile 200 

during the period MJJA of 2009-2011 at the CF site), only data from the alternative profile are 201 

used. 202 

Co-located with the SWATS instrument at SGP-CF is the Energy Balance Bowen Ratio 203 

System (see fuller description below), whose chief purpose is to estimate surface latent and 204 
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sensible heat fluxes [Cook, 2016a]; but the EBBR instrumentation also includes an ancillary 205 

component that measures SM by five probes that detect the moisture-sensitive dielectric 206 

constant. The SM values are derived from an average of the readings over the five sensors and 207 

are reported in gravimetric units (kg water/kg soil) which are a function of local soil properties.  208 

From knowledge of the density of the local soil with respect to water, EBBR SM values are 209 

converted to the more commonly used volumetric units (m3/m3). 210 

The Carbon Dioxide Flux Measurement Systems (CO2FLX) observations of soil moisture 211 

and various atmospheric variables are conducted near the center of a wheat field immediately 212 

south of the grass-covered CF site [Fischer, 2005]. Since wheat is typically harvested in June, 213 

during much of the MJJA study period this field is covered with either unharvested senescent 214 

wheat or wheat stubble that is equivalent to non-active vegetation. Hence, the CO2FLX 215 

observations are likely to display some deviations from those at the CF site that are due solely to 216 

differences in land cover. As in the EBBR SM instrumentation, CO2FLX SM sensors include 217 

electrodes and an oscillator whose resonant frequency depends on the dielectric constant 218 

(electrical capacitance) of the soil, which is sensitive to the moisture content.  219 

EBBR measurements of SM are only made at 2.5-cm depth. CO2FLX observations are 220 

available at both 5-cm and 15-cm depths, and SWATS measurements range from depths of 5 cm 221 

to 175 cm at some ARM stations. For our study, however, only 5-cm depth values of CO2FLX 222 

and SWATS SM are considered, for comparison with the 2.5 cm EBBR measurements.  223 

Figure 1 compares the temporal variation of these three estimates of shallow-depth soil 224 

moisture at the CF site, and in relation to observed precipitation events, during the MJJA season 225 

of the relatively dry and wet years 2006 and 2007, respectively.  The SWATS SM data vary over 226 

a reduced range of values compared to both the CO2FLX and EBBR. This is especially evident 227 
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in the dry year 2006, when CO2FLX and EBBR valuesplunge to  as low as about 0.1 m3/m3, 228 

while the minimum value of SWATS is only about 0.25 m3/m3. The anomalous minima of the 229 

SWATS SM data set result from the inability of its instrument probe to measure lower SM 230 

values than  0.25 m3/m3 [Cook and Kyrouac, 2015]. This is because the probe’s electrical signal 231 

has difficulty penetrating soils with substantial clay content (as at the CF site) when soil moisture 232 

is low, making the calibration of the SWATS instrument problematic. (This limitation also exists 233 

for SWATS SM measurements made at lower depths at the CF site.) 234 

On the other hand, there are substantially fewer missing values in the SWATS 235 

measurements than in the CO2FLX and EBBR SM data. Together with missing surface 236 

atmospheric observations, this substantially reduced the number of available soil moisture-237 

atmospheric pairings to investigate. For a total of 1107 days in the MJJA 2003-2011 study 238 

period, for example, there were an average of 1076 daily soil moisture-atmospheric covariance 239 

pairs for SWATS, 875 for CO2FLX, and 822 for EBBR soil moisture measurements.  240 

 For our study, the available ARM atmospheric measurements of interest are surface air 241 

temperature T, relative humidity RH, and latent and sensible heat fluxes L and H. At the CF site, 242 

the ARM Best Estimate (ARMBE) archives were used as a primary source of data for these 243 

variables [Xie et al., 2010; Phillips and Klein, 2014], but alternative measurements also were 244 

used where available. For example, at the CF site the ARMBE surface temperature and humidity 245 

are measured by Surface Meteorological (SMET) probe transmitters [Ritsche, 2008], while 246 

alternative temperature and humidity measurements also are recorded by the CO2FLX 247 

instrument system [Fischer, 2005] that is located in the harvested wheat field just south of the CF 248 

site. 249 
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At the grass-covered CF site, the ARMBE surface turbulent fluxes are estimated by the 250 

EBBR instrumentation system [Cook, 2016a]. Flux estimates are derived from measurements of 251 

surface net radiation, ground heat flux, and the vertical gradients of temperature and relative 252 

humidity that are made by a net radiometer, temperature/relative humidity and soil 253 

temperature/moisture/heat flowprobes, and by a wind-speed sensor. The meteorological data are 254 

used to calculate bulk aerodynamic (BA) fluxes for producing a value-added product known as 255 

BAEBBR. This  is a best-estimate of the turbulent fluxes that corrects sunrise/sunset spikes 256 

occurring in the raw EBBR fluxes, when the temperature and relative humidity gradients are of 257 

opposite sign and nearly equal in magnitude. The EBBR soil moisture at 2.5-cm depth also was 258 

used  in order to calculate the soil heat conductivity, for correction of the soil heat flow plate 259 

measurements. Together with the temporal change in soil temperature measurements, this 260 

calculated conductivity provides an estimate of the ground heat flux, which impacts the 261 

magnitudes of the turbulent fluxes. 262 

Eddy correlation (ECOR) sonic anemometers and H2O/CO2 analyzers provide alternative 263 

measurements of surface sensible and latent heat fluxes which are estimated directly from the 264 

correlation of vertical velocity with air temperature and water vapor density, respectively [Cook, 265 

2016b]. Over the same surface, ECOR sensible and latent heat flux measurements are generally 266 

of smaller magnitude than those of the EBBR instrument, since the latter are forced to be equal 267 

to the local available energy. The ECOR instrument near SGP-CF is sited close to the boundary 268 

between the grass-covered CF site and the harvested wheat field to the south. ECOR 269 

measurements thus are influenced by both surface types (depending on wind direction), and so 270 

will also differ from the EBBR measurements on the grass-covered CF site. Another difference 271 
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is that the ECOR data near SGP-CF are available for one fewer warm season (MJJA of 2004-272 

2011) than the EBBR (MJJA of 2003-2011).   273 

3. Analysis Approach, Metrics, and Observational LAC Results 274 

To analyze the terrestrial component of LAC--whether in observations or model 275 

simulations—we adopt the approach of Betts [2004, 2009], and focus on covariance relationships 276 

between daily averages of soil moisture and surface atmospheric variables such as the turbulent 277 

fluxes, relative humidity, and temperature. The daily average quantities are built up from hourly, 278 

or in some cases half-hourly samples, while accounting for data gaps during the MJJA warm 279 

seasons of 2003-2011 (see Phillips and Klein [2014] for details).  280 

The covariance relationships are displayed as scatter plots, with daily averages of soil 281 

moisture and of a specified atmospheric variable oriented along the x-axis and y-axis, 282 

respectively. A quantitative measure of the coherence of an x-y scatter plot is provided by the 283 

correlation coefficient R: 284 

R = cov(x,y)/ (xy) = <x’y’>/(xy)  285 

consisting of the temporal sum (denoted by < >) of the product of daily departures x’ and y’ of 286 

each variable from its multi-year statistical mean value, where x and y are the corresponding 287 

standard deviations. It may also be advisable to filter out the influence of the seasonal cycle (e.g. 288 

by subtracting the multi-year climatology from each month’s “raw data”) before computing R. 289 

However, other SGP studies of this type (Williams et al. [2015], Tang et al. [2017]) imply that 290 

the impact of the seasonal cycle on LAC metrics is of second-order importance for this region. 291 

Because R may be sensitive to mismatches in the standard deviations of the x and y 292 

variables (i.e. large variability y with small variability x, or vice versa), Dirmeyer [2011]  293 

recommends use of a “sensitivity index” I: 294 
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I = xb295 

where b = cov(x,y)/x
2 is the slope of the least-squares regression line y = a + bx calculated 296 

from the scatter of y versus x. Index I thus measures the magnitude of the average variation in y 297 

for a one-sigma variation in x, and takes on the same units as the y variable. It also can be seen 298 

that I = yR , so that I and R are related through the scaling coefficient y .We therefore employ I 299 

as an auxiliary LAC metric to R. 300 

To assess the statistical significance of R, the number of statistically independent daily 301 

average samples of y versus x must be estimated. Accounting for data gaps, there are a minimum 302 

of about 822 x-y paired samples in the 2003-2011 MJJA records associated with the EBBR soil 303 

moisture data, which suffer the most data gaps; but because these samples are serially correlated, 304 

they are not all statistically independent. We attempted to estimate an upper bound for the serial 305 

correlation interval by analyzing the e-folding length of the autocorrelation function of the 306 

slowly varying SWATS data in seasons where data gaps were not an issue. From this limited  307 

analysis, we conservatively estimated that  only every fifth daily average was statistically 308 

independent [see also Dirmeyer et al., 2012]. Under this assumption, the EBBR SM data set 309 

contains about 164 such samples. Applying a one-tailed Student’s t test [e.g. Bulmer, 1979] that 310 

assumes physically based foreknowledge of the sign of the correlation indicates that |R| > 0.18 is 311 

statistically significant with probability p = 0.01 (i.e. a 99 percent confidence level).  Where R is 312 

statistically significant, I is also assumed to be so, since it scales with R.  313 

 3.1 Observational Estimates of LAC at the SGP-CF site 314 

The coupling between soil moisture and surface evaporation is central to the terrestrial 315 

component of LAC; but this coupling is better expressed by the covariance between SM and the 316 

evaporative fraction EF, which is a quasi-conserved quantity on daily time scales [Shuttleworth 317 



13 

 

et al.,1989; Gentine et al., 2011]. For measured values of surface latent heating L and sensible 318 

heating H, 319 

        EF = L/(L + H)                                              320 

EF can be calculated from BAEBBR value-added estimates of L and H. Illustrative scatter 321 

plots of daily averages of EF with each of the independent shallow-depth SM measurements at 322 

CF (SWATS, CO2FLX, and EBBR) are shown in Figure 2. EF is seen to covary positively with 323 

all three SM measurements, and the LAC strength metric R ranges from a low value of 0.37 for 324 

the 2.5-cm-depth EBBR SM to a high value of 0.50 for the 5-cm-depth SWATS, with the 5-cm-325 

depth CO2FLX SM measurements yielding an intermediate value of 0.39. The coupling metric I 326 

is similarly ordered, with a low value of .042 displayed by the EBBR SM, .053 by CO2FLX, and 327 

.065 by SWATS.  (A corresponding disparity occurs when comparing LAC estimated from 328 

SWATS versus CO2FLX SM, both at 15-cm depths.) 329 

Qualitatively similar covariance scatter is exhibited by the surface relative humidity RH 330 

(measured by the SMET system—see above description) versus the three SM measurements 331 

(Figure 3). The LAC metrics for RH also are ordered similarly to those for EF: the strongest 332 

coupling with RH is shown by SWATS SM (R = 0.55, I = 7.40%), and the weakest by EBBR   333 

(R = 0.37, I = 4.43%), with CO2FLX SM displaying intermediate coupling strength (R = 0.42,    334 

I = 5.75%).  335 

In contrast to EF and RH, surface air temperature T (also measured by the SMET system) 336 

exhibits a negative covariation with soil moisture (Figure 4). The magnitude of LAC strength for 337 

SM-T coupling, as measured by the absolute value of the correlation coefficient R, is lower than 338 

for SM-EF or SM-RH couplings; but once again, the coupling of T with SWATS SM displays 339 
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the most negative magnitudes of R and I (-0.36 and -1.73 K, respectively), followed by CO2FLX 340 

(R = -0.32, I = -1.54 K) and EBBR SM (R = -0.27, I = -1.24 K). 341 

The available 2003-2011 record length of warm-season observations was assumed sufficient 342 

for estimation of SM and LAC statistics of acceptable accuracy [Findell et al., 2015; Ford et al., 343 

2016]. Analysis of the variations in R and I values for SM-EF coupling that occur with the 344 

progressive inclusion of each year’s warm season (Table S1) raises some caveats, however. In 345 

general, the estimated values of R and I coupling metrics associated with the three independent 346 

SM measurements appear to “stabilize” after the inclusion of about seven warm seasons (2003-347 

2009). However, including data for the last two years-- the very wet 2010 warm season and the 348 

very dry 2011--disrupts the relative stability of R and I attained for years 2003-2009, shifting 349 

their values by an average of several percent for correlations associated with SWATS SM, but by 350 

more than 10 percent for CO2FLX and EBBR SM. Thus, for nine years of warm-season 351 

measurements, the inclusion of data from a few exceptional years can alter the overall estimates 352 

of R and I to a surprisingly large degree for some SM measurements.  353 

The consistently high LAC strength metrics for SWATS SM measurements, compared to 354 

those for CO2FLX or EBBR, also warrant further analysis. First, from comparison of Figures    355 

2-4, the overall range of soil moisture values in daily average 5-cm SWATS data at SGP-CF is 356 

substantially less than what is found in either the CO2FLX or EBBR data. For instance, the 357 

minimum value of SWATS SM is about 0.25 m3/m3 (a consequence of the SWATS instrumental 358 

limitation mentioned in Section 2), which is much less dry than the lowest values seen in the 359 

other SM data sets thatlie below 0.1 m3/m3. It is therefore possible that the covariation of 360 

relatively low values of EF, RH, and T with an artificially high minimum SWATS SM may skew 361 
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the slopes of the respective regression lines higher, resulting in overestimation of the LAC 362 

strength metrics.  363 

We investigated the effects of imposing the same reduced range on the CO2FLX and EBBR 364 

SM data when calculating their LAC metrics; but in following this protocol we found that R and 365 

I for the non-SWATS data could not be raised substantially toward the corresponding higher 366 

SWATS values. To cite one example: the covariation of T with EBBR SM restricted to values 367 

greater than 0.25 m3/m3 yielded LAC strength metrics R = -0.30 and I = - 1.35.92 K, which are  368 

only moderately different than the metrics obtained from the covariation of T with the 369 

unrestricted EBBR SM (R = -0.27, I = -.1.24 K). 370 

We also considered the possibility that the lower values of R and I metrics in the CO2FLX 371 

data set might be explained by sampling errors in the CO2FLX or EBBR measurements, which 372 

display many more data gaps than the SWATS. To test this hypothesis, the SWATS data were 373 

degraded by eliminating daily average values of SM on those days where CO2FLX or EBBR 374 

measurements showed missing data. Then the LAC strength metrics for the SM-EF, SM-RH, and 375 

SM-T couplings were recalculated (see Table 1). While the EBBR-sampled SWATS data 376 

produced LAC strength metrics R and I that were somewhat lower than the original SWATS data 377 

set, the metrics calculated from the CO2FLX-sampled SWATS data were almost the same 378 

magnitude. Variations in sample size among the three SM data sets thus are not sufficient to 379 

explain the different magnitudes of the associated LAC strength metrics. These instead appear to 380 

be  due to differences in instrumentation, land cover, and depth of SM measurement. 381 

The LAC metrics shown in Figures 2-4 reflect only differences in SM measurements. In 382 

order to test the impacts of alternative measurements of the atmospheric variables on the LAC 383 

metrics, latent and sensible heat fluxes recorded by the ECOR instrument (displaying the 384 
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influence of both grass-covered and wheat-covered surfaces) were substituted for the grass-385 

covered EBBR measurements. Observations of RH and T by the CO2FLX instruments on the 386 

wheat-covered surface also were substituted for their SMET equivalents on the grass-covered CF 387 

site.  The impacts of these atmospheric-measurement substitutions on the LAC metrical values 388 

are listed in Table 2, together with the R and I values  shown in Figures 2-4. Only modest 389 

differences in estimated LAC strengths (generally, more in I than in R) are seen to result from 390 

such alternative atmospheric measurements, while the impacts of the different choices of SM 391 

measurement are generally greater.  392 

Of course, there is also an inherent statistical uncertainty in the estimated R value of an 393 

atmospheric variable correlated with a particular soil moisture data set; but the probability 394 

distribution of R becomes progressively more skewed as its sampled mean value increases, 395 

making the estimation of confidence limits on R problematical. Instead, R can be transformed 396 

into a normal variate Z:  397 

Z = 0.5*ln [(1+R)/(1-R)]  398 

with standard error Z = 1/(n – 3)1/2, where n is the number of statistically independent pairs of 399 

soil versus atmospheric observations [Fisher, 1921]. The +/-2R (+/-95-percent) confidence 400 

levels for R then can be obtained by an inverse transformation of the corresponding Z +/-  2 Z 401 

values [e.g. Snedecor and Cochran, 1967]. (When R is negative, as for the SM-T correlation, the 402 

absolute value of R is used to obtain Z, and the negative sign is restored after completing the 403 

inverse transformation.)  404 

Estimates of the range of the +/- 95-percent confidence limits for R values associated with 405 

SWATS, CO2FLX, and EBBR soil moistures (assuming 215, 175, and 164 statistically 406 

independent pairings, respectively) are listed in brackets in Table 1. The estimated +/- 95-percent 407 
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confidence intervals for each of the measured correlations R in Figures 2-4 are all found to 408 

overlap for the three different SM measurements, whether correlated with EF, RH, or T. For 409 

instance, in the case of SM-EF covariations (shown in Figure 2), the + 95-percent confidence 410 

limits for EF correlated with EBBR and CO2FLX soil moistures are 0.50 and 0.51, respectively, 411 

which exceed the -95-percent confidence limit of 0.39 for SWATS soil moisture (Table 1). Thus, 412 

from a purely statistical standpoint, correlations of the selected atmospheric variables with the 413 

three different soil moisture measurements cannot be distinguished from one another, at a 95-414 

percent level of confidence. 415 

3.2 Observational LAC estimated over the SGP region 416 

Results reported in the last section imply substantial uncertainties in observed LAC 417 

strengths at the SGP-CF site. It should be possible to obtain a more statistically robust estimate 418 

of LAC by considering SM-EF covariation across the SGP region. Such a regionally 419 

representative estimate of LAC also should make a more suitable benchmark for evaluating 420 

coupling strength in CAM5.1/CLM4 model simulations that are realized on a 0.9 x 1.25-degree 421 

horizontal grid. This section illustrates how such a regionally aggregated estimate of SM-EF 422 

coupling strength, central to the terrestrial component of LAC, can be obtained.  423 

While some two dozen ARM extended (E) facilities surround the CF site, there are only six 424 

where both soil moisture and atmospheric surface variables were recorded continuously over the 425 

MJJA 2003-2011 study period. Their geographic locations and soil/vegetation types are listed in 426 

Table 3. Available soil moisture observations at these E facilities include half hourly to hourly 427 

measurements of 2.5-cm EBBR and 5-cm SWATS soil moisture. Compared to the CF site, more 428 

SM data are missing for both the SWATS east and west soil profiles (SWATS-E and      429 

SWATS-W). Hence, instead of averaging profile values, it is necessary to choose SM values 430 
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from one or the other profile, depending on which includes the more complete data time series. 431 

However, an advantage of the SWATS soil moisture measurements at the E sites is that they 432 

extend over a moisture range comparable to that of the EBBR measurements, owing to soils that 433 

contain less clay than at the CF site (see Section 2.1 discussion and Table 3). At these E sites 434 

surface latent and sensible heat flux measurements, from which estimates of evaporative fraction 435 

EF can be derived, are provided by BAEBBR value-added products. On average, for the MJJA 436 

2003-2011 study period, there are 740 SWATS SM-EF sample pairs at the selected E sites, and 437 

about 840 EBBR SM-EF pairs, yielding statistically independent sample sizes of about 148 438 

versus 168, respectively. 439 

In their detailed analysis of in situ observations of soil moisture over the conterminous U.S., 440 

Dirmeyer et al. [2016] found that the temporal variability of soil moisture was less sensitive to 441 

aggregation over neighboring sites than was the temporal mean. For estimating a regional 442 

average of SM-EF coupling strength, it thus seems advisable to spatially average a collection of 443 

locally calculated SM-EF values of R and I, rather than to compute these metrics from the scatter 444 

of SM and EF data that are spatially averaged. In fact, LAC metrics across the six E facilities 445 

display much spatial heterogeneity, exemplified by Figure S1 which contrasts SM-EF daily 446 

average scatter plots (employing both SWATS and EBBR SM versus EBBR EF data) at site E4 447 

(Plevna, Kansas) and E12 (Pawhuska, Oklahoma). Despite quantitative differences in coupling 448 

estimates for SWATS versus EBBR SM, LAC strength metrics are consistently much higher at 449 

the E4 site (R = .55, I = .062 for SWATS; R = .50, I = .058 for EBBR SM) than at E12 (R= .09,  450 

I = .008 for SWATS; R = .14, I = .012 for EBBR SM), where the LAC strength metrics are so 451 

low that their statistical significance is questionable (see Section 2.2 discussion).  452 
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The range of SM values at site E4 (ranging between about 0.08 to .20 m3/m3 –Figure S1a 453 

and S1b) versus those at E12 (ranging between about .21 to .40 m3/m3 –Figure S1c and S1d) 454 

reflect a well-known west-east (eastward increasing) precipitation gradient across the SGP 455 

region [Sisterson et al., 2016]. Because E4 experiences more moisture stress than E12, soil 456 

moisture should generally exert greater control on warm-season EF at E4 [Phillips and Klein, 457 

2014; Ford et al., 2015a; Nicholson, 2015], thus accounting for the observed stronger coupling at 458 

E4. However, when considering the local LAC metrics across all six extended facility sites, such 459 

an explanation seems too simplistic. For example, although average local soil moisture values at 460 

sites E7, E9, E12, and E20 are all about 0.3 m3/m3, their LAC metrics differ substantially     461 

(Table 3). This outcome implies that diverse local soil and land cover types (Table 3, column 2) 462 

also strongly impact LAC strength across the SGP region. It suggests as well that the available 463 

observations of shallow soil moisture are not very indicative of the impact that vegetation, rooted 464 

at deeper soil depths, can have on EF.   465 

 Columns 5 and 6 of Table 3 list the SM-EF strength metrics R and I for SWATS versus 466 

EBBR soil moisture, along with the range of estimated +/- 95-percent confidence levels. At each 467 

site, the confidence intervals of SWATS-associated correlations overlap the EBBR-associated 468 

ones, implying that the respective site-specific R values are statistically indistinguishable. 469 

However, the very low SWATS- and EBBR-associated correlations at sites E9 and E12 can be 470 

distinguished, with 95-percent confidence, from the highest correlations at sites E4 and E20. For 471 

E9 this may be the result of the soil texture (loam), whereas for E12 it is likely influenced by the 472 

vegetation (prairie tallgrass), whose roots extend to much greater depths than the pasture grass at 473 

the other locations. Tallgrass plants draw most of their moisture from well below the 0-5cm top 474 

layer of soil, and thus are less dependent than pasture grass on the shallow-layer SM. 475 
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Listed in the bottom row of Table 3 are the cross-site regional averages of R and I for 476 

SWATS (R = .35, I = .037) and EBBR (R = .31, I = .034) soil moistures, respectively, where 477 

these regional estimates are calculated from a simple linear averaging of R and I over the six E 478 

sites. In addition, an inverse-distance-weighting algorithm, centered on the CF site, is used to 479 

compute an alternative regional average of each LAC strength metric < M >: 480 

                             < M > = i (wi Mi)i wi , where weight wi  =1/ Di 481 

Here Mi is a strength metric R or I at an extended site Ei located at distance Di from the CF site. 482 

Di and the associated inverse-distance weights for each E site all are listed in Table 3. The 483 

corresponding weighted regional averages (i.e. summations of the weighted R and I values) are 484 

shown in parentheses at the bottom of columns 6 and 8 for SWATS (R = .31, I = .032) and 485 

EBBR (R=.27, I=.030), respectively. Weighted and unweighted regional average values of R and 486 

I thus do not differ much from one another, and they also are rather insensitive to the choice of 487 

SM data set: the regional-average R value lies between .27 and .35 (the corresponding I value 488 

between .030 and .037), which are indistinguishable with 95-percent confidence. These regional- 489 

average estimates of R and I provide observational benchmarks for evaluation of model 490 

simulations of SM-EF coupling strengths, to be taken up in following sections. 491 

 4. Model Properties and Simulation Configurations 492 

The CAM5.1 atmospheric model [Neale et al., 2012] operates on a horizontal grid with 493 

resolution 0.9 x 1.25 degrees latitude/longitude and on a vertical grid of 30 levels. Its physical 494 

parameterizations include the radiative transfer scheme of Iacono et al. [2008], shallow and deep 495 

convective parameterizations after Park and Bretherton [2009], Zhang and McFarlane [1995], 496 

and Neale et al. [2008], a planetary boundary layer and associated moist turbulence scheme 497 

developed by Bretherton and Park [2009], prognostic cloud physics and microphysics schemes 498 
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of Morrison and Gettelman [2008], Gettelman et al. [2010], and Park et al. [2014], and a 499 

prognostic aerosol scheme after Liu et al. [2012]. 500 

The CLM4 land model [Oleson et al., 2010] uses the same horizontal grid as the 501 

atmospheric model, includes 15 vertical soil layers and 5 snow layers, and accounts for 502 

heterogeneity in surface types (glacier, lake, wetland, etc.). The CLM4 represents vegetated 503 

surfaces by as many as 16 plant functional types (PFTs). In our simulations, a version of CLM4 504 

without dynamic vegetation or carbon fluxes was employed, and distinct vegetation properties 505 

such as PFT fractions and canopy top and bottom heights instead were prescribed for each 506 

gridbox. Leaf and stem area indices (LAI and SAI) were similarly prescribed, but varied 507 

temporally according to monthly climatologies.  508 

Surface radiative fluxes account for vegetation and canopy properties, and turbulent fluxes 509 

follow Monin-Obukhov similarity theory, as formulated by Zeng et al. [1998]. Depth-dependent 510 

moisture storage in CLM4 is the net outcome of parameterized precipitation infiltration, surface 511 

and sub-surface runoff, diffusion of soil water, sub-column drainage, and interactions with 512 

groundwater, as described by Zeng and Decker [2009].  513 

We investigated simulations in which the CAM5.1/CLM4 coupled system was run in two 514 

qualitatively different configurations: free-running Atmospheric Model Intercomparison Project 515 

(AMIP) and controlled hindcast (HC) simulations, both over the period 1997 to 2012. In the 516 

AMIP simulation, observed sea surface temperatures (SSTs) and sea ice extents (SIEs) were 517 

prescribed as ocean boundary conditions. The atmospheric and land states both were initialized 518 

from a model climatology determined after a prior long spin-up of soil moisture. For the 519 

controlled HC configuration, the SSTs and SIEs also were prescribed as in the AMIP 520 

experiment, but the three-dimensional fields of atmospheric prognostic dynamic and 521 
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thermodynamic state variables instead were initialized at the beginning of each simulation day 522 

according to their ERA-Interim Reanalysis values. Initialization of prognostic aerosol 523 

concentrations proceeded by nudging the atmospheric U and V winds, using a Newtonian 524 

relaxation method, toward their ERA-Interim values. (Nudging only the model winds resulted in 525 

more realistic aerosol concentrations than when the model atmospheric temperature and 526 

humidity were also nudged toward ERA-Interim values.) The daily initial conditions for the land 527 

state were determined by running the CLM4 in an offline configuration, where it was forced with 528 

observed winds, precipitation, and downward shortwave and longwave surface radiative fluxes. 529 

This land initialization procedure yielded more realistic values of soil moisture than in the free-530 

running AMIP simulation.  531 

For each day’s initialization of atmosphere and land, hindcasts (i.e. model forecasts of 532 

historical weather conditions) were generated over the following three days, with a steadily 533 

increasing drift of the model hindcasts from observations. Since day-1 hindcasts often show 534 

spurious perturbations resulting from initialization “shock”, LAC results for day-2 hindcasts 535 

were analyzed in our study (see Ma et al. [2015] for further details). 536 

 5. Evaluation of Model LAC: Free-Running versus Controlled Configurations 537 

Similarities and differences in LAC displayed by the model in its free-running AMIP versus 538 

controlled HC configurations, as well as comparisons with the observed estimates of LAC at 539 

both the CF site and across the SGP region, are discussed next. 540 

 51 Model evaluation near the SGP-CF site 541 

In this section, all reported model results are those simulated at the grid point (with 542 

coordinates 36.28 N, 97.50 W) that lies nearest to the SGP-CF site (at 36.61 N, 97.48 W). Scatter 543 

plots of the covariances of coupled CAM5.1/CLM4 daily averages of EF, RH, and T with respect 544 
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to 5-cm depth soil moisture are shown in Figure 5 for the AMIP simulation. LAC strength 545 

metrics R and I for the respective AMIP-simulated couplings are seen to lie well above the 546 

highest observational LAC estimates at the CF site, which are associated with the SWATS soil 547 

moisture measurements (Figures 2-4). The model exceedance of the observed strength metrics is 548 

especially dramatic for the SM-T coupling, where AMIP values R = -.80 and I = -4.45 K are more 549 

than twice as large as the highest SM-T observational estimates (R = -.36, I = -1.73 K, Figure 4).  550 

Figure 6 shows the corresponding scatter plots for the controlled HC simulation. The scatter 551 

of EF versus SM (Figure 6a) displays a “kink” at an SM value of about 0.3 m3/m3, which is 552 

somewhat more pronounced than in the AMIP simulation (Figure 5a). Further investigation of 553 

the scatter of EF associated with evaporation from bare ground versus vegetated fractions of this 554 

model grid cell imply that this feature results from an abrupt leveling off in the variation of bare-555 

ground EF for SM values greater than about 0.3 m3/m3.  The clear signature of bare-ground 556 

evaporation in Figure 6a suggests that it is a strong contributor to the total EF in this model grid 557 

cell. As is found for the AMIP simulation (Figure 5), the LAC strength metrics for HC lie well above 558 

the highest observational estimates associated with the SWATS soil moisture data (Figures 2-4). 559 

The SM-EF and SM-RH coupling strengths for the HC simulation are slightly less than those for 560 

the AMIP run (compare Figures 5a/6a and 5b/6b), but the SM-T coupling strength for the HC is 561 

markedly less (R = -.53, I = -2.50 K) than that for AMIP (R = -.80, I = -4.5 K). 562 

The very tight SM-T coupling in the AMIP simulation relative that for the HC (Figures 563 

5c/6c) apparently results from the free-running model’s more frequent “visits” to drier soil 564 

moisture states than in the controlled HC simulation. For instance, we can identify the “dry” 565 

portion of the model’s SM-EF transition zone (between completely wilted and fully saturated 566 

SM conditions) with SM values less than ~0.25 m3/m3, and the “wet” portion with SM values 567 
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greater than ~ 0.35 m3/m3. Then about 64 percent of SM values for the AMIP configuration are 568 

found to occur at “dry” levels, while only about 6 percent rise to “wet” levels; for the controlled 569 

HC configuration, however, the dry/wet SM frequencies are instead 34 and 19 percent, 570 

respectively.  571 

When soil moisture in semi-arid regions such as the SGP falls into drier states, its coupling 572 

with surface atmospheric variables tends to increase [Phillips and Klein, 2014; Ford et al., 2015a; 573 

Nicholson, 2015]. Meanwhile, surface EF falls, while surface sensible heat flux H and 574 

temperature T rise. The enhanced SM-T coupling for drier SM states in the free-running AMIP 575 

configuration tends to amplify a continental warm bias that is present in simulations of the 576 

CAM5.1/CLM4, as well as in many other current-generation GCMs [e.g. Klein et al., 2006; 577 

Cheruy et al., 2014; Van Weverberg et al., 2015; Merrifield and Xie, 2016; and Morcrette et al., 578 

2017, Van Weverberg et al. 2017, Ma et al. 2017,  and Zhang et al., 2017--in  review]. In the 579 

controlled HC configuration, however, soil moisture is prevented from falling as frequently into 580 

drier states because the land model is initialized each day by forcing it with observed 581 

precipitation.  Hence, the SM-T coupling is less intense in the HC simulation than in the free-582 

running AMIP.   583 

Figure 7 compares time series of daily average precipitation rate P near the CF site in both 584 

AMIP and HC simulations with CF-observed values in the MJJA warm season of the relatively 585 

dry/wet years 2006/2007. Observed MJJA precipitation is seen to occur in sharp spikes with 586 

maximum amplitude about 80 mm day-1; but precipitation events in the AMIP simulation remain 587 

mostly below 10 mm day-1 intensity. As would be expected in a free-running simulation of this 588 

type, the modeled precipitation also does not align well with the timing of the observed events. 589 

There is a better correspondence of the timing of modeled and observed P events in the HC 590 
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simulation (a consequence of its more realistic atmospheric and land states); but the simulated 591 

amplitudes remain mostly too low: although the HC soil moisture is more realistically initialized 592 

each day, it still “feels” the effects of the too-scant model precipitation amounts on intra-diurnal 593 

time scales.  594 

While under-predicting precipitation peaks in the observed time series, the accumulated 595 

seasonal precipitation in both the AMIP and HC simulations (Figure S3) configurations 596 

moderately exceed the observations during the dry 2006 warm season. This disparity appears to 597 

result from a pervasive “drizzle effect” (Stephens et al. [2010]), wherein climate models are 598 

found to rain out in smaller amounts and at higher frequencies than are observed. In the much 599 

wetter 2007 warm season, however, both configurations show pronounced shortfalls in 600 

accumulated precipitation (in the AMIP run, more than in the HC). 601 

Table 4 summarizes the LAC metrics for the AMIP and HC simulations, and compares these 602 

with observational values that are linearly averaged over the three SM data sets listed in Table 1. 603 

For each LAC metric, the +/- 95-percent confidence intervals also are shown in brackets, where 604 

it is assumed that the observational averages constitute 164 statistically independent daily soil 605 

moisture-atmospheric pairs (the same as that associated with the EBBR SM measurements, 606 

which suffered the most missing data). Because there are no missing model data, the 607 

corresponding number of statistically independent samples are 221 (every fifth day in a total of 608 

1107 in MJJA 2003-2011). The AMIP and HC R metrics are all much higher than the 609 

corresponding observational averages, and also are distinguishable with 95-percent confidence 610 

from the latter. In contrast, when comparing the AMIP versus HC correlations, only the SM-T 611 

couplings are clearly distinguishable. This suggests that the AMIP-HC differences in SM-T 612 

coupling strength may not only be a consequence of the HC’s more realistic land state, but also 613 
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may depend on AMIP-HC differences in radiative and hydrological forcings of the land, as well 614 

as parameterizations that govern the latent and sensible heat transfers at the soil-atmosphere 615 

interface. 616 

Listed in Table 5 are model performance statistics (mean bias, root-mean-square error 617 

RMSE, and modeled versus observational temporal variance ratio m
2/o

2) of AMIP- and        618 

HC-simulated single variables at the near-CF grid point, evaluated relative to ARMBE 619 

observations at the CF site. All performance metrics are computed using daily average model 620 

and observational values for the 2003-2011 MJJA warm seasons. The evaluated model variables 621 

include forcings of the land surface (precipitation, net surface shortwave and longwave radiative 622 

fluxes) and of land response variables (surface latent and sensible heat fluxes, evaporative 623 

fraction, surface relative humidity and temperature, and soil moisture at 5-cm depth).  624 

From Table 5, the precipitation rate is negatively biased in both simulations, but is less so in 625 

the controlled HC configuration, as Figure 7 implies. In both simulations also, the modeled net 626 

surface shortwave heating is under-predicted, while the surface net longwave cooling is over-627 

predicted, resulting in an excessive overall radiative cooling of the surface. The controlled HC 628 

run shows a lesser radiative cold bias than the AMIP, however.   629 

The surface latent heat flux is negatively biased for both model configurations, while the 630 

surface sensible heat flux is biased positive for the AMIP, but negative for the HC. These 631 

turbulent flux differences yield an evaporative fraction that is smaller than observed for the 632 

AMIP run, but larger than observed for the HC.  Both model configurations display negatively 633 

biased surface relative humidity (consistent with underpredicted latent heat fluxes) and positively 634 

biased surface air temperature (consistent with overpredicted net upward longwave radiation). 635 
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Hence, the modeled atmospheric surface layer is systematically too warm and dry, although 636 

much more so in the AMIP run than in the HC. 637 

Simulated soil moisture is a model-specific variable [Koster et al., 2009], and so will not 638 

necessarily agree closely with observations. For example, the modeled SM at 5-cm depth for 639 

both the AMIP and HC simulations is closer to that of the SWATS measurements, which at the 640 

CF site do not display as large a range of variation as the CO2FLX data. (The 5-cm soil moisture 641 

performance statistics are not calculated relative to EBBR measurements at 2.5 cm depth.) The 642 

tendency of the free-running AMIP simulation to frequent drier soil moisture states than that of 643 

the HC results in a substantially lower mean value of SM (0.234 versus 0.281 m3/m3).  644 

It is not surprising that RMS errors listed in Table 5 are generally less for the controlled HC 645 

configuration than for the free-running AMIP, which cannot be expected to closely reproduce the 646 

observed day-to-day variations.  Temporal variance ratios m
2/o

2 also are usually more realistic 647 

for the HC simulation than for AMIP. The modeled soil moisture variance at CF is similar to that 648 

of the CO2FLX observations, but is more than twice as high as that for the SWATS 649 

observations. (The latter disparity probably can be discounted, since the variability of the 650 

SWATS measurements seems anomalously low at the CF site--see Figures 2-4.) However, for 651 

several other variables, the modeled variability is either decidedly too large (surface net 652 

longwave flux, evaporative fraction, relative humidity) or too small (precipitation rate, surface 653 

net shortwave flux, surface turbulent fluxes).   654 

From the standpoint of the representation of land-atmosphere coupling, the model’s 655 

underprediction of both precipitation amplitude and frequency is perhaps the most troubling. 656 

These forcing errors impact the soil moisture, the humidity of the boundary layer, and the 657 

turbulent fluxes—all key elements for determining LAC strength. 658 
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5.2 Model LAC evaluated at regional scale  659 

The LAC strengths of the model in both AMIP and HC configurations at the near-CF grid 660 

point are significantly larger than the observational estimates. However, this grid point 661 

“represents” a gridbox of dimension 0.9 x 1.25-degrees, and so there is a danger of a scale 662 

mismatch in such a single-point comparison with observations. A fuller evaluation of the 663 

CAM5.1/CLM4 model thus demands examination of its simulation of LAC across the SGP 664 

region. Here, we compare the SM-EF coupling, central to the terrestrial component of LAC, 665 

against the observational estimates of this quantity that are discussed in Section 2.3.2.  666 

Besides the near-CF model grid point (at 36.28 N, 97.50 W), eleven grid boxes span the       667 

3 x 3-degree latitude/longitude SGP region.  In both AMIP and HC simulations also, the MJJA 668 

climatological precipitation displays only a weak spatial gradient that is oppositely directed 669 

(westward increasing) to that of the observations (eastward increasing). The model-prescribed 670 

regional soil types have varying percentages of sand and clay, and the prescribed vegetation 671 

cover mostly consists of generic grass and crop plant functional types [Oleson et al., 2010]. 672 

These prescribed quantities probably are unlikely to fully capture the observed spatial inter-site 673 

variations in surface characteristics that are listed in Table 3.  674 

Scatter plots of SM-EF covariances for both AMIP and HC simulations at a grid box that is 675 

northwest of the near-CF grid point, and for one to its east, are shown in Figure S2. Because 676 

these locations roughly correspond to those of the E4 and E12 observational stations, these 677 

model plots can be compared with the observed results shown in Figure S1. The model LAC 678 

metrics near the E12 location (Figures S2c and S2d) are much greater than those observed at the 679 

E12 station (Figures S1c and S1d). Moreover, the observed differences in LAC metrics between 680 
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the E4 and 12 stations (Figures S1a versus S1c, and S1b versus S1dd) are absent in the modeled 681 

representations (Figures S2a versus S2c, and S2b versus S2d). 682 

SM-EF strength metrics R and I for the free-running AMIP simulation are provided across 683 

eleven model grid boxes in Table S2, and for the controlled HC simulation in Table S3. In the 684 

AMIP run (Table S2), there is little variation in the R and I values across model grid boxes, in 685 

contrast to their pronounced spatial heterogeneity in region-wide observations (Table 3). For the 686 

HC simulation (Table S3), there is somewhat more cross-grid heterogeneity, with R values 687 

ranging between .49 to .74 and I values between .050 to .14. Presumably, this is mostly a 688 

consequence of the controls that keep the HC atmospheric and land states more realistic than 689 

those in the free-running AMIP simulation.  690 

Both distance-weighted and unweighted regional averages of R and I values are listed in the 691 

bottom rows of Tables S2 and S3, along with an estimate of +/- 95-percent confidence intervals, 692 

given in brackets. These metrics display little sensitivity to whether a weighted or unweighted 693 

averaging procedure is followed. They also are very similar for the AMIP (R = .65, I = .11-.12) 694 

versus the HC (R = .66-.67, I = .10) model configurations. The metrical values all substantially 695 

exceed the corresponding observational regional averages (R = .27 to .35, I = .030 to.037) listed 696 

in the bottom row of Table 3, and they are statistically distinguishable (with 95-percent 697 

confidence) from the observational averages. Thus, the hypothesis that the modeled SM-EF 698 

coupling strengths of the CAM5.1/CLM4 model are too high across the SGP region is confirmed 699 

with 95% confidence.  700 

6. Vegetation as an Alternative Coupling Agent  701 

Except over bare-ground areas, the coupling of soil moisture with the surface atmosphere is 702 

mediated by vegetation, where the ratio of the local area of the vegetation relative to that of bare 703 
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ground is commonly expressed by a non-dimensional leaf area index (LAI).  Williams and Torn 704 

[2015] estimated LAI at the grass-covered CF site, and at the adjacent wheat field where the 705 

CO2FLX instruments are located. They inferred LAI from the normalized difference vegetation 706 

index (NDVI) calculated from visible and near-infrared reflectances measured by radiometers at 707 

both locations. Williams and Torn [2015] also showed that during daylight hours (when the 708 

respective land covers are photosynthetically active, the coupling between LAI and the 709 

evaporative fraction EF is markedly stronger than that between 10 cm-depth SWATS soil 710 

moisture and EF. This is because plant roots tap into soil moisture at greater depths than is 711 

immediately available in bare-ground locations, and the evaporative flux associated with 712 

transpiration is strongly regulated by vegetation stomatal conductance (proportional to LAI). The 713 

mediating vegetation thus plays a larger role in LAC coupling than does the shallow-depth soil 714 

moisture at these SGP locations--a result  that is also in accord with the regional modeling study 715 

of Hirsch et al. [2014] over Australia.Because the version of CLM4 used in our study does not 716 

include dynamic vegetation. Instead, LAI (inferred from satellite measurements of phenology), is 717 

prescribed as a seasonal-cycle climatology. However, this model prescription does not account 718 

forthe substantial inter-annual/intra-seasonalvariability in LAI that accompanies differences in 719 

precipitation amounts and timings during individual warm seasons (see Figure 8).Although the 720 

2003-2011 MJJA mean values of observed versus modeled LAI are of roughly comparable 721 

magnitudes (observed mean = 1.88, model mean = 1.14), their inter-annual/intra-seasonal 722 

variabilities are very different. 723 

 The consequences of these stark differences in LAI variability are illustrated by Figure 9, 724 

which contrasts the scatter plot of daylight (hours 12 Z to 23 Z) averages of EF versus LAI that 725 

are observed at the CF site with those simulated by the CAM5.1/CLM4 model at the closest grid 726 
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point to the CF site. The diminished coherence of the LAI-EF interaction in the model relative to 727 

the observational estimate (reflected by much lower model R and I metrics) is striking. However, 728 

if the observations of LAI are restricted to the same range as that of the model (LAI values 729 

between 0.9 and 1.4—see Figure 8b), the observational LAC strength metrics of Figure 8a are 730 

reduced to R = 0.27 and I = 0.030--of the same order as the simulated values R = 0.18 and I = 731 

0.029. The model’s underestimation of local LAI-EF coupling strength thus seems to be mostly a 732 

consequence of the CLM4 prescription of LAI with greatly reduced inter-annual/intra-seasonal 733 

range, which does not include observed changes in LAI that depend on the relatively wet or dry 734 

character of a particular MJJA warm season (Figure 9).  735 

Using only point observational estimates of LAI in Figures 8a and 9 is, admittedly, not an 736 

ideal standard for evaluating the modeled LAI-EF coupling, since a grid-point value of LAI 737 

represents a spatial average of several different types of land cover that occupy the associated 738 

grid box. The estimation of in-situ LAI from NDVI requires measurements of spectrally-resolved 739 

albedo, which are only available currently at the CF site. A fairer in-situ test of the modeled LAI-740 

EF coupling at regional scale thus awaits future measurements of spectral reflectance at ARM 741 

extended facility sites. Nevertheless, judicious interpretation of Figures 8 and 9 suggests that 1) 742 

LAI is an essential complement to shallow-depth soil moisture for estimating terrestrial land-743 

atmosphere coupling strength, and 2) realistic inclusion of the inter-annual/intra-seasonal 744 

variability of LAI in models is important for accurately representing this coupling strength [see 745 

also Ford and Quiring, 2013 and Zscheischler et al., 2015].  746 

Recent work by Tang et al. [2017] seems to corroborate these assertions. Estimating the 747 

regional LAI-EF coupling strength from SGP-downscaled satellite observations of LAI and from 748 

EBBR in-situ measurements of EF for 2004-2011 warm seasons, Tang et al.  show that the 749 
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strength of the LAI-EF coupling exceeds that of the corresponding shallow-depth SM-EF 750 

coupling at six out of eight sites in the SGP region. 751 

   Considering the model LAC results of Section 3, and taking the implications of Figures 8 752 

and 9 at face value, the CAM5.1/CLM4 appears to overestimate the SM-EF coupling, while 753 

underestimating LAI-EF coupling near the CF site. As previously mentioned in our discussion of 754 

Figure 6a, these results suggest that more modeled surface evaporation emanates from the bare-755 

ground fraction of the near-CF grid cell than from the vegetated fraction. Figure 10, showing 756 

MJJA time series of the model’s surface evaporation from bare ground versus vegetation in 757 

specific wet and dry years, appears to confirm this hypothesis.  758 

Williams et al. [2016] also found a similar disproportion in the SM-EF versus LAI-EF 759 

coupling strengths occurring in a single-column version of the NCAR Community Earth System 760 

Model (CESM1.2.2) atmosphere, when centered on the SGP-CF site and coupled to the CLM4.5 761 

land model [Oleson, Lawrence et al. 2013]. In attempting to correct these coupling biases, 762 

Williams et al. [2016] modified selected properties of the CLM4.5 model: they prescribed model 763 

LAI according to the observational estimates of Williams and Torn [2015], while also increasing 764 

bare-soil resistance to evaporation, the minimum moisture conductance of vegetation stomata, 765 

and leaf reflectance. These modifications improved the single-column model predictions for the 766 

warm seasons at the CF site, especially during the dry 2006 summer, when large negative biases 767 

in precipitation and positive biases in surface temperature were greatly reduced. Williams et al. 768 

[2016] also performed offline CLM4.5 simulations at the CF site, where inputs of the Williams 769 

and Torn [2015] LAI estimates were included separately from the modified model physics 770 

parameterizations. They found that the LAI and physics changes were approximately of equal 771 
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importance as potential explanations for the discrepancies between modeled and observed 772 

terrestrial coupling metrics.  773 

The performance improvements for the offline CLM and single-column atmospheric model 774 

offer some hope for reducing excessive model LAC through physically based alterations of land 775 

surface/vegetation characteristics. Of course, implementing similar changes in a more complex 776 

climate model such as the coupled CAM5.1/CLM4 may well prove to be a more difficult 777 

undertaking [e.g. Hirsch et al., 2016].  778 

7. Concluding Remarks 779 

Our study investigates the terrestrial component of observed land-atmosphere coupling 780 

(LAC) at local and regional scales on the U.S. Southern Great Plains (SGP), and its 781 

corresponding representation in the CAM5.1/CLM4 coupled atmospheric/land model, when 782 

configured in both free-running Atmospheric Model Intercomparison Project (AMIP) and 783 

controlled hindcast (HC) simulations.  784 

The main points of this study can be summarized as follows: 785 

• Different measurements of shallow-depth soil moisture SM reveal considerable 786 

variability in observational estimates of LAC and its spatial variability across the 787 

SGP region; 788 

• The spatial variability in observed LAC appears to be associated with an intra-789 

regional gradient in the moisture climatology, but also to local variations in soil type 790 

and land cover; 791 

• The coupling of surface evaporative fraction with vegetation leaf area index (LAI) is 792 

substantially stronger than that with shallow-depth SM, presumably because LAI 793 
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serves as a proxy for root-level soil moisture and plant physiological characteristics 794 

that mediate the interaction between soil moisture and surface evapotranspiration; 795 

• When the CAM5.1/CLM4 model is run in the HC configuration, the biases in 796 

simulated forcings and state variables are generally reduced, in comparison with 797 

those in the free-running AMIP configuration; 798 

• To some extent, these HC-AMIP forcing differences act to shift the LAC behaviors 799 

of the model, but in both model configurations the SM-EF coupling strength is much 800 

greater than the observational estimates, while it displays substantially less spatial 801 

variability across the region; 802 

• In contrast, the coupling of LAI with EF in the model seems too weak at a site where 803 

this can be estimated observationally, and may be due to an under-specification of 804 

LAI inter-annual/intra-seasonal variability and/or to under-representation of surface 805 

evaporation from the vegetated fraction of the model grid box. 806 

In the discussion that follows, we elaborate on these salient points. 807 

For our study, three alternative choices of Atmospheric Radiation Measurement (ARM) soil 808 

moisture observations were available at the SGP-CF site, each having different strengths and 809 

weaknesses, were available. An inherent limitation was that only the coupling of atmospheric 810 

surface variables with soil moisture at shallow depths (2.5-5.0 cm)  could be compared.  In future 811 

investigations of this type, it would be preferable to estimate observed LAC strengths over a 812 

range of depths spanning the vegetation rooting.  Hence, it is noteworthy that a successor ARM 813 

Soil Temperature and Moisture Profile (STAMP) system measuring soil moisture over five 814 

depths at some seventeen SGP extended facilities has been deployed since 2015 [Cook, 2016c]. 815 
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Even for shallow soil depths, considerable uncertainty is evident in observed estimates of 816 

LAC strength based on the three different observations of shallow soil moisture. This uncertainty 817 

is greatest at the CF site, where artifacts in the reported SWATS soil moisture characteristics 818 

make these data markedly different from those of the CO2FLX and EBBR. At each of six ARM 819 

extended regional facilities surrounding the CF site, lesser differences in estimated SM-EF LAC 820 

strength using SWATS and EBBR soil moistures are found than at the CF site. Spatial variations 821 

in LAC strength across the SGP region are substantial, however, due partly to differences in soil 822 

wetness that reflect an observed west-east precipitation gradient across the region; but diverse 823 

local soil and land cover types also appear to strongly influence observed regional spatial 824 

variability in LAC strength.  825 

With its more realistic atmosphere/land initialization, the controlled HC configuration 826 

ameliorates the excessive deviations of the AMIP simulation from SGP-CF observations, but 827 

sizeable biases still remain. (The comparison of gridbox values to point-wise observations at the 828 

CF site introduces some ambiguity in the evaluation of the model performance, however.) The 829 

HC simulation’s over-prediction of variability in evaporative fraction EF and surface relative 830 

humidity RH, despite its under-prediction of variability in precipitation and surface radiation, 831 

implies that the model’s excessive terrestrial LAC will not be corrected solely by improving 832 

these model forcings. It appears that the detailed physics of the model’s interactions among soil 833 

moisture, the surface turbulent fluxes, and the surface temperature and humidity states also will 834 

need to be improved. The model representation of LAC strength in both the AMIP and HC 835 

simulations nonetheless clearly lies outside the envelope of observational uncertainty across the 836 

SGP region. Model prediction of overly strong LAC can have significant consequences on a 837 
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range of time scales: overestimation of the influence of the land on the atmospheric state is likely 838 

to produce erroneous weather forecasts, seasonal predictions, and climate-change projections.  839 

Another clue as to a possible cause of the deficient representation of LAC by the 840 

CAM5.1/CLM4 is provided by considering vegetation LAI as an alternative coupling agent to 841 

soil moisture. Compared to the observational evidence (limited to the CF site), the apparently 842 

too-weak coupling of EF with LAI, and its too-strong coupling with soil moisture, suggests that 843 

the overly strong representation of LAC may be related to the simulation of evaporation from 844 

bare ground areas, in excess of that from the vegetation cover. Thus, model surface 845 

characteristics such as LAI and evaporation resistance parameters, in addition to physical 846 

parameterizations of surface fluxes, may also be responsible for the problematic simulation of 847 

LAC.  848 

Before CAM/CLM developers can begin to improve the modeled representation of LAC, 849 

they will require a more precise, process-oriented diagnosis of the detailed physics of soil 850 

moisture and vegetation interactions with surface fluxes and temperature/moisture states. 851 

Because of the continual correction of the coupled atmosphere/land state that is implemented in 852 

the HC configuration of the model, this simulation lends itself to such a process-oriented 853 

investigation. For example, if high-frequency atmospheric observations are available, it is 854 

feasible to evaluate daily model hindcasts, or composites of such hindcasts organized according 855 

to synoptic type (e.g. dry- versus wet-day behaviors). Such a fine-grained analysis contrasts with 856 

the strictly statistical evaluation of free-running climate simulations that is typically employed.  857 

Planned future work therefore will exploit these advantages of the HC model configuration.  858 

We anticipate that LAC studies at different spatiotemporal scales will become increasingly 859 

feasible with the advent of soil-moisture sensing satellites such as SMOS (Soil Moisture Ocean 860 
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Salinity, Kerr et al. [2010]) and SMAP (Soil Moisture Active Passive, Entekhabi et al. [2010]), 861 

as well as growing networks of in-situ data such as ISMN (International Soil Moisture Network, 862 

Dorigo et al. [2011]), NASMD (North American Soil Moisture Database, Quiring et al. [2016]), 863 

SCAN (Soil Climate Analysis Network, Strobel et al. [2016], www.wcc.nrcs.usda.gov/scan), and 864 

the fledgling NSMN (National Soil Moisture Network, Strobel et al. [2016]).  Given that so little 865 

is known about the detailed physics of LAC, other studies that pursue diverse diagnostic 866 

approaches, and that apply these to different types of models, are to be strongly encouraged. 867 

 868 

  869 
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Table 1: For the SGP-CF site, correlation R and sensitivity index I of the atmospheric surface 1252 

evaporative fraction EF(estimated from BAEBBR measurements of the turbulent fluxes), relative 1253 

humidity RH, and air temperature T, with respect to the SWATS SM data. Rand I values also are 1254 

shown for SWATS data that are reduced according to available CO2FLX and EBBR soil 1255 

moisture samples for the MJJA warm seasons in 2003-2011. Also listed are the R and I values of 1256 

EF, RH, and T associated with the CO2FLX and the EBBR soil moisture data. The most extreme 1257 

positive or negative value of the correlation for each atmospheric variable is shown in red, and 1258 

the least extreme value in blue. In addition, the range of +/- 95-percent confidence levels for the 1259 

R values associated with the SWATS, CO2FLX, and EBBR soil moisture measurements are 1260 

shown in brackets (assuming 215, 175, and 164 statistically independent pairs of atmospheric 1261 

and soil moisture variables, respectively--see Section 3.1 discussion). 1262 

 1263 

Soil Moisture 
measurement 

EF RH T  

SWATS 
 

 
R = .50 [ .39 to .60 ] 

 
I = .065 

 
 

R = .55 [ .45 to .64 ] 
 

I = 7.40 % 
 

 
 

R = - .36 [ -.24 to -.47 ] 
 

I = -1.73 K 
 

 
CO2FLX-sampled SWATS 
 

 

 
R = .52  

 
I = .070 

 
 

R = .54      
 

I = 7.32 % 
 
 

R = -.38  
 

I = - 1.82 K 

EBBR-sampled SWATS 
 

R = .42 
 

I = .049 
 

 
R = .47   

 
I = 5.52 % 

 
 

R = - .22 
 

I = - 1.00 K 
 

CO2FLX 
 

 
R = 0.39 [ .25 to .51] 

 
I = .053 

 

 
R = 0.42 [ .29 to .54] 

 
I = 5.75 % 

 

R = -0.32 [ -.18 to -.45] 
 

I = -1.54 K 

EBBR 
 

 
R = 0.37 [ .23 to .50 ] 

 
I = .042 

 

R = 0.37 [ .23 to .50 ] 
 

I = 4.43 % 

R = -0.27 [ -.12 to -.41 ] 
 

I = -1.24 K 

 1264 

  1265 



49 

 

Table 2: 2003-2011warm-season (MJJA) correlations R and sensitivity coefficients I of the 1266 

SWATS, EBBR, and CO2FLX shallow-depth soil moisture content measurements with respect 1267 

to observationally based estimates of surface evaporative fraction EF, and surface relative 1268 

humidity RH and temperature T, all in the vicinity of the SGP-CF site (coordinates 36.61 N, 1269 

97.48 W). Here, EF is derived from surface latent and sensible heat fluxes that are measured by 1270 

the BAEBBR system, or alternatively, by the ECOR instrument which is part of the CO2FLX 1271 

system located in a wheat-covered field adjacent to the CF site.  The RH and T values are ARM 1272 

Best Estimate (ARMBE) data obtained from the ARM Surface Meteorology Observation System 1273 

(SMET) instruments or from CO2FLX tower measurements. Note that the ECOR data are 1274 

available only for the years 2004-2011, while all others are for the period 2003-2011.  1275 

 1276 

 1277 

Soil 
Moisture 
Data Sets 

 

EF 

 

RH 

 

Ts 

BAEBBR ECOR SMET CO2FLX SMET CO2FLX 

SWATS 

R = .50                 

I = .065 

R = .54            

 I = .083 

R =.55 

 I = 7.40 % 

R = .51 

I = 6.52 % 

R = -.36 

 I = -1.73 K 

R = -.37 

 I = -1.80 K 

CO2FLX 

R = .39 

 I = .053 

R = .40 

 I = .061 

R =.42 

 I =5.75 % 

R = .44 

 I = 5.58 % 

R = -.32 

 I = -1.54 K 

R = -.30 

 I = -1.46 K 

EBBR 

R = .37 

 I = .042 

R = .47 

 I = .064 

R = .37 

 I = 4.43 % 

R = .38 

 I = 4.43 % 

R = -.27 

 I = -1.24 K 

R = -.26 

 I = -1.19 K 

 1278 

 1279 

 1280 

 1281 

 1282 

 1283 

 1284 

 1285 

 1286 

 1287 

 1288 

 1289 

 1290 

 1291 

 1292 

 1293 
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Table 3: Selected extended facility geographical location, dominant soil and vegetation types, and  1294 

distance from the CF. Also listed are the local coupling strength metrics R and I determined from  1295 

the scatter of evaporative fraction EF (BAEBBR measurement) relative to soil moisture SM                                1296 

(both SWATS and EBBR measurements). In addition, the inverse-distance weightings (IDW)  1297 

relative to the CF are shown for each station. Finally, the last row lists the regional averages of the  1298 

unweighted and weighted (in parentheses) R and I values across all the extended facility sites. In  1299 

addition, for each R value the range of the estimated +/- 95-percent confidence limits also are  1300 

given in brackets, assuming 148 independent samples for SWATS-EF, and 168 for EBBR-EF  1301 

correlations. 1302 

 1303 

Site 
Location 

Soil, Vegetation Type 

Distance 
to CF (km) 

IDW     R, I SWATS R, I EBBR 

E4 
Plevna, KS  (38.0 N, 98.3 W) 
fine sandy loam, shrubs/grass 

157.44 .101 .55 [ .42 to .66 ], .062 .50 [ .37 to .61 ], .058 

E7 
Elk Falls, KS (37.4 N, 96.2 W) 
silt loam, pasture 

143.00 .111  .38 [ .23 to .51], .038 .22 [ .07 to .36 ], .022 

E9 
Ashton, KS (37.1 N, 97.2 W) 
loam, pasture 

53.05 .306 .21 [ .05 to .36 ], .022 .15 [ -.01 to .30 ], .017 

E12 
Pawhuska, OK (36.7 N, 96.3 W) 
sandy loam, tallgrass prairie 

108.88 .146  .090 [ -.08 to .25 ],.008 .14 [ -.01 to .29 ], .012 

E15 
Ringwood, OK (36.4 N, 98.2 W) 
sandy loam, pasture 

70.68 .225  .33 [ .17 to .47 ], .033 .28 [ .13 to .42 ], .032 

E20 
Meeker, OK (35.5 N, 96.9 W) 
fine sandy loam, pasture 

144.64 .110  .52 [ .39 to .63 ], .059 .57 [ .46 to .67 ], .064 

Regional-average values:         R = .35 [ .20 to .49 ],  I = .037      ( or R = .31 [ .16 to .44 ], I = .032) for SWATS SM                                                                                                                                                                         

                                                     R = .31 [ .15 to .45 ], I = .034      ( or R = .27 [ .12 to .41 ], I = .030) for EBBR SM 

 1304 
 1305 

 1306 

 1307 

 1308 

 1309 

 1310 

 1311 

 1312 

 1313 

 1314 

 1315 

 1316 

 1317 

  1318 
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Table 4: The top panel lists the arithmetic average of the coupling strength metrics R and I  1319 

associated with the SWATS, CO2FLX, and EBBR soil moisture measurements at the SGP-CF  1320 

site (coordinates 36.61 N, 97.48 W). The bottom panel lists the corresponding R and I metrics 1321 

for both the free-running AMIP and the controlled HC simulations at the closest model grid  1322 

point to CF (coordinates 36.28 N, 97.50 W). For both observational and model results, the R  1323 

and I values are computed from daily averages over months MJJA of the 2003-2011 period.  1324 

In both cases also, the range of the +/- 295 percentconfidence levels on R are indicated  1325 

in brackets, assuming 164 statistically independent pairings for the observational correlations  1326 

and 221 for the model simulations (see Section 3.2.1 discussion). 1327 

 1328 

Average Observed 
Coupling Strength 

  SM-EF 
R = .42 [ .28 to .54 ] 

  
I = .053 

  SM-RH 
R = .45 [ .32 to .57 ] 
 
I = 5.86 % 

   
   SM-T 

R = - .32 [ -.17 to -.45 ] 
 
I = - 1.50 K 

 1329 

Model Coupling Strengths 

                         AMIP                              HC 

  SM-EF 
R = .67 [ .57 to .75 ] 
  
I = .13                             

R = .71 [ .62 to .78 ] 
 
I = .10 

  SM-RH 
R = .76 [ .70 to .81] 
 
I = 15.6 % 

R = .71 [ .62 to .78 ] 
 
I = 12.0 % 

   
   SM-T 

R = -.80 [ -.75 to -.84 ] 
 
I = -4.45 K 

R = -.53 [-.43 to -.62 ] 
 
I = -2.50 K 

 1330 

 1331 

 1332 

 1333 

 1334 

 1335 
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 1336 

Table 5: Comparative performance statistics for AMIP (unshaded rows) and HC (shaded rows)  1337 

simulations of the CAM5.1/CLM4 model at its closest grid point (coordinates 36.28 N, 97.50 W) 1338 

to the SGP-CF site (coordinates 36.28 N, 97.50 W), with respect to ARM observations at the  1339 

SGP-CF site, where all data are daily averages over the MJJA warm seasons of years 2003-2011.  1340 

The listed statistics include each simulation’s mean bias and root-mean-square error (RMSE)  1341 

with respect to the observations, as well as the ratio of the modeled temporal variability to that of  1342 

the observations (m
o

 ).  1343 
 1344 

Variable 

 
Observed 

Mean 
 

 
Model 
Mean 

  Mean 
Bias 

RMSE 

 

m
2/o

2 
  

Precipitation Rate (mm day-1) 3.11 

2.01 -1.04. 10.69 0.12 

2.77 -0.33 10.37 0.37 

Sfc Net Downward 
Shortwave Flux (W m-2) 

233. 

222. -11. 109. 0.67 

221. -12. 88. 0.78 

Sfc Net Upward  
Longwave Flux (W m-2) 

62. 

77. +15. 40. 1.83 

69. +7. 20. 1.46 

Sfc Latent Heat Flux (W m-2) 101. 

73. -28. 70. 0.47 

96. -5. 58. 0.52 

Sfc Sensible Heat Flux (W m-2)  47. 

57. +10. 60. 0.55 

41. -6. 54. 0.36 

Sfc Evaporative Fraction 0.474 

0.454 -.020 0.20 1.54 

0.536 +.062 0.16 1.20 

Sfc Relative Humidity (%) 65.5 

52.3 -13.2 26.0 2.76 

61.1 -4.4 11.7 1.67 

Sfc Air Temperature (K) 
 

297.3 
 

301.5 +4.2 6.4 1.04 

299.5 +2.2 2.9 1.01 

 
5-cm Soil Moisture, 
 relative to SWATS (m3/m3) 
 
 

0.283 

0.234 -0.049 0.085 2.73 

0.281 -0.002 0.049 2.48 

5-cm Soil Moisture, 
 relative to CO2FLX (m3/m3) 
 

0.178 

0.234 +0.056 0.101 0.85 

0.281 +0.103 0.104 1.12 

 1345 
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 1346 

 1347 

 1348 

 1349 

 1350 

 1351 

 1352 

 1353 

 1354 

 1355 

 1356 

 1357 

 1358 

 1359 

 1360 

 1361 

 1362 

 1363 

 1364 

 1365 

 1366 

 1367 

 1368 

 1369 

 1370 

 1371 

 1372 

 1373 

 1374 

 1375 

 1376 

 1377 

 1378 

 1379 

 1380 

 1381 

 1382 

 1383 

 1384 

 1385 

Figure 1: Time series of three independent measurements of shallow depth soil moisture SM  1386 

at the SGP-CF site (coordinates 36.61 N, 97.48 W) in the anomalously dry 2006 MJJA (top)  1387 

and in the anomalously wet 2007 MJJA season (bottom). In each year, precipitation rates are 1388 

shown in black, SWATS 5-cm SM in green, EBBR 2.5-cm SM in red, and CO2FLX 5-cm  1389 

SM in violet. Note: the SM values (in units of m3/m3) are multiplied by a factor of 100, so that they can be 1390 

displayed on the same scale as the precipitation rate (in units of mm hr-1). 1391 
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Figure 2: 2003-2011 MJJA daily average scatter of evaporative fraction EF, measured by the  1432 

EBBR instrument, versus a) SWATS 5-cm depth soil moisture, b) CO2FLX 5-cm depth soil  1433 

moisture, and c) EBBR 2.5-cm depth soil moisture, all observed at the SGP-CF site. SM  1434 

values are in volumetric units of m3/m3 and EF is dimensionless. The coupling-strength metrics  1435 

R and I are also shown in each case (consult Section 3 of the text for details). 1436 
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Figure 3: As in Figure 2, except for the daily average scatter of surface relative humidity RH  1483 

(in %) plotted versus shallow-depth soil moisture (in m3/m3) given by a) SWATS, b) CO2FLX, 1484 

and c) EBBR measurements, respectively.  1485 
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Figure 4: As in Figure 2, except for the scatter of daily average surface air temperature T  1529 

(in K) plotted versus shallow-depth soil moisture given by the a) SWATS, b) CO2FLX,  1530 

and c) EBBR measurements, respectively. 1531 
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Figure 5: 2003-2011 MJJA daily average scatter of CAM5.1 surface atmospheric variables 1578 

versus CLM4 soil moisture at 5-cm depth (in volumetric units of m3/m3) from the free-running 1579 

AMIP simulation are shown. In a), the surface evaporative fraction EF versus model SM is 1580 

displayed, while in b) and c), respectively, the model surface relative humidity RH (in %) and 1581 

surface air temperature T (in K), both versus the model SM are shown. LAC strength metrics R 1582 

and I are also displayed in each case.  1583 
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Figure 6: As in Figure 5, except for the controlled HC simulation of the CAM5.1/CLM4 model.  1629 
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Figure 7: Time series of AMIP and HC simulations of daily average precipitation rate (in mm 1671 

day-1, red line) at the closest model grid point to the ARM SGP-CF site (coordinates 36.28 N, 1672 

97.50 W) during the MJJA season of relatively dry and wet years 2006/2007. These model 1673 

results are compared with observations (black line) at the CF site (coordinates 36.61 N, 97.48 W) 1674 

for the same time periods.  1675 
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Figure 8: Observational estimates of leaf area index LAI (in dimensionless units) at the SGP-CF 1728 

site (black lines) in years displaying diverse hydroclimatic conditions, compared with its 1729 

representation in the controlled HC simulation of the CAM5.1/CLM4 model (red lines) in the 1730 

same years.  1731 
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Figure 9: 2003-2011 MJJA scatter plots and estimated coupling-strength metrics R and I of 1783 

daytime (12Z to 23 Z) averages of evaporative fraction EF versus leaf area index LAI, as 1784 

observed a) at the SGP-CF site for grass land cover, and as simulated b) in the controlled HC 1785 

experiment of the CAM5.1/CLM4 at the grid point closest to the SGP-CF site. 1786 

a) 

b) 
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Figure 10: Contributions to surface evaporation E (in units of mm day-1) by vegetation (in green) 1790 

and by bare soil (in black) in the controlled HC simulation of the CAM5.1/CLM4 model, for the 1791 

MJJA season in years displaying diverse hydroclimatic conditions. Note that the contributions by 1792 

vegetation include both transpiration and canopy evaporation. 1793 
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